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EXECUTIVE SUMMARY

This research considers the influence of different construction materials on the dynamic impact
factor of bridges. The general concept of the dynamic impact factor and typical evaluation methods are
reviewed. A comparison of bridge codes from some countries is made. Then, a simply supported Euler-
Bemnoulli beam is used to evaluate influence of materials on the impact factor. A numerical example is
shown with a constant vehicle loading substituted into the model using three different materials for the
bridge system. Interesting results from the model suggest that the choice of construction material is a
secondary factor in the dynamic impact factor. A large number of other factors can be evaluated in the
same manner to determine which design parameters have the greatest influence on the dynamic impact
factor. The simple method for evaluation of changes in the dynamic impact factor is expected to be useful

to practitioners and students who are interested not only in the influence of material selection, but also on

the other factors, such as pavement roughness.



1. INTRODUCTION

Overview

When a bridge receives vehicle loading, the vehicle suspension will react to roadway roughness
by compression and extension of the suspension system. This oscillation creates wheel-axle forces that
exceed the static weight during the time the acceleration is downward, and reduces the static weight when
acceleration is upward. This phenomenon is referred to as “impact loading” or “dynamic loading,”
commonly expressed as a portion of the static axle loads. The influence of dynamic loading on bridge
loading usually is computed using the impact factor, also known as dynamic factor, or dynamic load
allowance. The AASHTO specifications use the term impact factor, which also will be used in this report
[1].

Impact factor is an important parameter in bridge design and evaluation. As the amount and
weight of moving vehicles on roadways increase, the dynamic loading to a bridge system also increases,
and in consequence, the impact factor becomes more important. Observations and measurements indicate

that the dynamic behavior of a bridge system is a function of three primary factors [2]:
» dynamic properties of the vehicle (mass, suspension, axle configuration, tires, speed)
* road roughness (approach, roadway, cracks, potholes, waves)
« dynamic properties of the bridge structure (span, mass, support types, materials, geometry).

It has been well established that natural frequencies of a bridge system have the primary influence
on its dynamic response. Material properties are an essential determinant of the natural frequencies of a

bridge. The influence of material properties is a primary motivation for the research.

Many investigations have been made to evaluate the impact factor of bridges. Significantly less
effort has been focused on the effect of construction materials on the impact factor. Hence, the intent of
this paper is to focus on the influence of different materials on the impact factor. The outline of this paper

is that a simple model based on a Lagrangian formulation of the Euler-Bernoulli beam is presented to



estimate the impact factor. This work is described after a review of definitions related to impact factor and
a review of specifications related to bridge design codes. Finally, the accuracy of bridge design codes

related to specifications of the impact factor will be examined using numerical data.

Definition of Impact Factor

The concept of a dynamic impact factor has been used in the design of bridges for years.
Generally, it has been suggested that the impact factor is defined as the amount of force, expressed as a
fraction of the static force, by which dynamic force exceeds static force. However, there is no uniformity
in the manner by which this increment is calculated from test data. The different ways of calculating the
dynamic increment can be easily explained using Figure 1.1, which is based on work by Bakht and
Pinjarkar [3]. Data, such as shown in Figure 1.1, typically is constructed from actual field test data.
Figure 1.1 shows the variation of the dynamic and static deflections at mid-span of a girder with respect
to time. The dynamic deflections were obtained when the test vehicle traveled on the bridge at normal
speed. Static deflections were obtained when the vehicle traveled at crawling speed so as not to induce

dynamic magnification of deflections. Notation has been adopted for Figure 1.1 as follows:

Fc

7777 & /7§;7

Figure 1.1: Mid-Span Deflections Under a Moving Vehicle Load.

= maximum deflection under the vehicle traveling at crawling speed.

o

stat

S . =maximum deflection under the vehicle traveling at normal speed. This deflection also denoted as

dyn
o

max *



&' = maximum deflection obtained from the curve of median deflections. Note that S and 0, do

not necessarily take place at the same load location.

& ... = minimum dynamic deflection in the vibration cycle containing J . -

&, = static deflection corresponding to &, . & isnot necessarily the maximum static deflection.

) , =median deflection corresponding to S oo (Median deflection is the mean deflection of dynamic

peaks)

S = static deflection at the same location where A1 is recorded.

Al = maximum difference between dynamic and static deflections; A, does not necessarily take place at

the same load position that causes either &, 0r ,,.

A, =maximum difference between dynamic and median deflections.
A, = difference between dynamic and static deflections at the same load location that causes O, .

A, = difference between dynamic and median deflection at the same load location that causes &, .

These various definitions have been used in the past to obtain the dynamic increment from test
data. Depending on the application, similar parameters have been given different names. For the sake of
convenience, all the parameters will be referred to as impact factors and denoted by the symbol IM. The

following have been, at various times in the literature, used to describe dynamic effects on loading [3].
Definition 1
According to the definition of impact increment of dynamic response by Fuller et al. [4], the

largest of IM would be given by:
IM=A,/§,
It should be noted, however, that this method is the result of a hypothetical and impractical

extrapolation of a definition, which perhaps was not intended for this purpose.



Definition 2
A commonly used variation of Definition 1 is that IM taken as the ratio of the measured

instantaneous dynamic response to the maximum static response. Thus,

IM=A,/0,,
This definition has been used in most analytical studies.
Definition 3
When the static deflections are assumed to be the same as median deflections, Definition 2 of IM

changes to

IM=A,/d"
Definition 4
Definition 4 was used in Switzerland to interpret test data from the dynamic bridge tests
conducted from 1949 to 1965 [5]. According to this definition, the dynamic increment IM is given by
5 max_ 5 min
M=——
5 max+ 5 min
It is noted that this definition of the dynamic increment was abandoned in Switzerland after 1965
in favor of Definition 5.
Definition 5
According to the fifth definition, which has been used in Switzerland for tests conducted before

1945 and after 1965, the dynamic increment IM is given by



Definition 6
A variation of Definition 5 would be when the static response corresponding to the maximum

dynamic response is taken as the same as the median response obtained from the dynamic test data. In this

case, IM is given by

1

This definition has been extensively used to interpret results of many dynamic tests on bridges in

Ontario [6].

Definition 7

In some research conducted in Ontario, applicability of the following expression was considered

for obtaining IM [7]:

S pn— O

IM=

dyn - stat

’
é‘ stat

Definition 8

If the actual static responses are used instead of median responses, the following variation of

Definition 7 is obtained:

O gu— O

M=

dyn = Y star

5

stat

Definition 9

A rational approach, proposed by B. Bakht and S. G. Pinj arkar, to compute a representative value

of the impact factor from the test data is expressed by

=f(1+cvs,6’)
a,

M

where



I = mean value of the dynamic amplification factor [3];

¢ = coefficient of variation of the dynamic amplification factor, that is , the ratio of standard

\4

deviation and mean;

s = the separation factor for dynamic loading, which has been found to have a value of 0.57 [3];

B= the safety index, from reliability based design, which typically has a value of about 3.5 for
highway bridges; and

a , = the live load factor

It is recommended that, in the absence of more rigorous analysis, the value of &, should be taken

as 1.4 [3], which also is the live load factor specified in the Ontario Code [8].

The broad range of definitions of IM based on measured responses is a consequence of the facts
that, (a) the static response of a bridge is not necessarily the same as the median response obtained from
the dynamic test data, and (b) the maximum static and dynamic responses do not always take place under
the same load position. If the static and median responses were identical and the maximum static and
dynamic responses took place simultaneously, the diversity of definitions of IM would disappear and

Definitions 2 through 8 all would give the same value of IM for a given set of data [3].

International Perspective of Impact Factor

Figure 1.2 shows various bridge engineering design specifications from around the world, which
use dramatically different factors [9]. The ordinate axis represents the load increase or impact factor and
the abscissa is the fundamental frequency of the structure. The broad variation indicates that the
international bridge design community has not yet reached a consensus about this issue. Figure 1.2 shows
bridge design specifications before 1992, more recent design codesbof some countries also are included in
this paper since they have changed somewhat (AASHTO (USA) [1], OHBDC (Canada) [10], Highway
bridge design code (Taiwan) [11], and Eurocode (European) [12]). The AASHTO bridge design code and
OHBDC have been adopted by many countries. The Eurocode is accepted by most countries in the
European community. A tendency is showrn, among recent design codes, that specific numerical impact

factors are used to replace formula based factors. For example, the previous AASHTO code [13] used an



impact formula that attempted to reflect dynamic behavior by using span length as a parameter. Another
example, the Ontario Highway Design Bridge Code [4], modeled this behavior as a function of the natural
frequency of the bridge system. But both the AASHTO and the OHBDC use specific numerical impact
factors in the present design codes. Clearly, the present specification does not attempt to model dynamic
effects with great accuracy, however the codes attempt to reflect, with sufficient accuracy and
conservation, a reasonable factor needed for design. One of the objectives of this paper is to identify the
reliability of the bridge design codes with respect to variation of the impact factor for different bridge

construction materials. This comparison will be performed in the discussion following the numerical

examples.
1
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Figure 1.2: International Perspective of Impact Factor



2. THE SYSTEM MODEL AND EXAMPLES

Approach

The approach taken in this study was to develop a small analytical model that can be used to
explore the sensitivity of bridge dynamic impact factors to a number of input variables. The initial model
uses a simply-supported Euler-Bernoulli beam to approximate response of the bridge span. The outline of
the approach is such that the derivations using the Lagrangian formulation of the Euler-Bernoulli (E-B)
beam assumptions are appropriately reviewed first. Next, the model shape function of the system are
found. Finally, the formula which determines deflection induced by a loading force at any location in the
E-B beam is presented. After this development, numerical examples are generated. The purpose of this
effort is to provide an overview of impact factors using a simple model system. This provides a

foundation for which an improved model can be incorporated into subsequent phases of the study.

Review of Lagrangian Dynamics

Lagrange’s equation, which is based upon energy concepts, is an extremely powerful device for
analysis of dynamic systems. To develop this foundation and to make it match the assumptions associated
with the Euler-Bernoulli beam, the configuration shown in Fig. 2.1, consisting of a simple beam

supporting a group of j masses, M, (r=1,2,...j), and subjected to a group of m forces, F,(1=1,2,...m), is

considered [14]. The deflected shape is defined by a set of N generalized coordinates,

g,(1=12,..N).

S
~———

—~——— "



Suppose now that a virtual displacement is introduced consisting of a small change in one
generalized coordinate, g;. Let this change be designated by &g, . By the principle of virtual work, the

work done by external forces during the virtual disturbance must equal the corresponding change in

internal strain energy. We may write the preceding statement as

é‘We+§Win+§Wc=§U 2.1)
where

SW, =virtual work done by external loads F;
OW,, = virtual work done by inertia forces

OW, = virtual work done by damping forces

OU = change in internal strain energy

Three of these terms may be expressed simply as

oW, = oW dq; (2)
aq;

sw, =Lz, (b) @2
aq;

5U =225 ©

H

and SW,, may be expressed by

s =Sy s
in T Z( ryr)aq q;

r=1 i

where y, is the total displacement at mass r. JOW,, also can be expressed in the equivalent form as

d < oy J oy
OW. =—— S My —=L6q,+ Y M, y.—=0g¢, 2.3
m dt p—r ryr aq. ql ; ryr aqi ql ( )

H

The equation shown in (2.3) is based upon the fact

Wey oy Doy Vr
0q; 0q, aq,

I

d,
Zt'(yr

H



Now, we define the kinetic energy K and its derivatives as

L1
K= ZEM, y'? (a)

r=1
0K 3 ' Oy,
— =2 My (b) (2.4)
oq rz=1: oq;

j ]

Q_IE = ZM’y; %_ (C)
aqi r=1 aqx

Furthermore, since y, is a function of g,

=g g 2 P

!

oq; q; 0g;

Equation (2.4b) may therefore, be rewritten as

Ky 2 o9

If then Egs. (2.4c) and (2.5) are substituted into Eq. (2.3), the result has the form

sw, =L (&

oK
—)0q,+(—)Iq,; 2.6
in 7 aq;) 4d; (aq,-) 4q; (2.6)

Finally, by substituting Egs. (2.2) and (2.6) into Eq. (2.1) and canceling J¢;, equation (2.7) is

obtained

d @K, oK oU oW, oW, e

dt oq;" 0q;, oq;, 0q; g,
Equation (2.7) shows the kinetic energy K, the strain energy U, the work done by the damping

forces W, , and the work done by real external forces W, in terms of the generalized coordinates ¢, ...
q - When these expressions are differentiated as indicated and substituted into Eq. (2.7), the result is an

equation of motion. In the case under consideration, the term 0K / 0q; is zero, since kinetic energy is a

function of velocity rather than of displacement. Hence, Lagrange’s equation becomes

10



4 oK, oU oW, 2.8)

Derivation of an Euler-Bernoulli (E-B) Beam
Assume a simply supported uniform beam with constant length (1), uniform distributed mass (m),
mass per length ( ©), and flexural rigidity (EI) as shown in Fig. 2.2. From a free body of the beam and

considering the influence of the kinetic energy, the equation of motion can be derived from Newton's

second law. Note that small displacements will be assumed (ds=dx).

F.B.D. y

/\/H::::H/WdM

ds V+dVv

K.ED.

E © = mass per length

Figure 2.2: Free Body and Kinetic Energy Diagrams of a Simply Supported Beam

Adding forces in the vertical direction, Newton's second law implies that
T> F,=Ma,

From this addition it is then evident

62
Lf(x,)dx—dv]= pdx—5- Py
The equation of motion could be expressed as

o Y,

P Zl; =f(x0) (2.9)

11




The shear and moment of a beam are

2
v=—(-l£,M=EId f
dx dx

which then produces from the second derivative

dv d? oy o'y
—=—[El—]=El—=
dx dxz[ 6x2] ox*

which is then substituted into (2.9), to arrive at

82 4
P22 122 = f(x)
ot ox (2.10)
To get the normal model shape, we set f(x,t)=0 and use separation of variables. Assume
y(x,1) = X(X)T(2) 2.11)
then substituted into (2.10) with f(x,t)=0, to arrive at
2 EI &
?[X(X)T(t)] + (7)5,‘[)(()‘)7"(1)] =0
If set EyX I ¢ @.12)
p X T
then the two domains of a Euler-Bernoulli beam are
EI -
(k)X +CX =0 (mode shape) (2.132)
Y7
T"-CT =0 (time response) (2.13b)

To get the natural frequencies and the normal mode shapes of a E-B beam, we start with the

equation (2.13a). Since C=+ @* or C=0 gives no solution, we assume C=- @*. Then

2
@ Pyx =0
El

=X —(

If, for this case,




then, the resulting solution has the familiar form
X (x) = acosh(fx) +bsinh(F x) +ccos(fx) + dsin(fx)
The second derivative of the equation is
X' (x) = aff* cosh(fBx)+b* sinh(f x) - cff* cos(fx) —df’ sin(fx)
Then it is necessary to impose boundary conditions as follows:
X0)=0=>a+c=0
X(I)=0=> acosh(f!)+bsinh(S1) + ccos(Bl)+dsin(f1)=0

X' (0)=a-c=0

X'(H= aﬂ2 cosh(,ﬁl)+b,ﬁ2 sinh(ﬂl)—c,b’2 cos(,b’l)—d,é’2 sin(f1)=0
=>a=c=0
and

bsinh(B1)+dsin(f1)=0
bsinh(A)—dsin(f1)=0

:{s?nh(ﬂl) SiI‘l(ﬂl) ]{b}=0
sinh(#l) -—sin(fl)||d

For a non-zero solution, the determinant of the matrix of the coefficients must equal zero. Then, it is

necessary to

sinh(f)  sin(8D) | _
sinh(Bl) —sin(Bl)|

which has the result

= —2sinh(Z1)sin(fl) =0
since sinh(B)#0 if Sl#0

= sin(#1) =0, and b=0

= pl=nrp,= %Z,n =1,2,3,....

13



2
2P gt =p [ELo Ty (B 10,
EI Yo l Y2,

The solution for the shape function is then
X, (x)=sin(8,x) = sin(%“-) 2.14)

This gives the familiar shape functions associated with the E-B beam.
The System Model

To determine the response of an E-B beam due to applied forces, the Lagrange's equation will be

used.

From Egq. (2.11)
50 =3 X, (T, 0
The velocity of the beam is then given by
Y0 =2 X, T
The kinetic energy of the complete system can be expressed as
K=2pfyiai=2p f[gxn TP d
Expanding the series, we arrive at
K=o [ XL O+ p | (31X, TN, (T O

The second term indicates the sum of all the modal cross products, which is equal to zero because of the

orthogonal condition of the shape function. Then
—_ 1 S 2 TIZ dx = 1 c 2 2 d
K=—p| X @] == P2 T [ X ()
n=1 n=1

and

14



oz =T [ Xr o
d oK 2
— =0l | X, (x)dx

The work done by external forces during an arbitrary distortion is
W, = [ FOI X, T, s = [ FOPELY, X, (T, (s, if we set Tx.0=FOp0o)
n=1 n=1

The rate of change of external work with respect to T, is therefore

ow,
< =F(t X)X, (x)dx
o 0 [ p(0)X, ()
The internal strain energy is
M? El § &
U= |—dx= 2dx=— T X" d
EZEI -[ZEI 2 I(Zl oK)

The rate of change of internal strain energy with respect to T, is therefore

oU

= EIT, [ (X}) dx

X, = sin(f’lﬁx),:. (X7)? = (315)4()(”)2

Then

ou
oT,

n

—EI(—) T, [(x,)dx

Writing the Lagrange’s equation (2.8) with damping omitted and substituting from the above, we obtain

d oK dU _oW,
dt 0T 8T, T,

n

Ty [ X (x)dx+EI( Py, [ Xidx= F) [ p)x, (x)dx (2.15)

15



Since we know by previous definition (Eq. (2.12)) that, if the last equation (2.15) is divided by the

coefficient of T, the coefficient of T, becomes o’ . Thus

_FO[p0X,(x)dx
T/(t)+ 02T, () = (2.16)
p J: X2 (x)dx
If damping is then added, equation (2.16) then becomes
_ FO[p@X,@dx
T/t +2¢,0,T,0)+w,T,() = 2.17)
p X2 @)ax

In this paper, the focus is on the influence of construction materials on the theoretical value of the
impact factor. Hence, a relatively simple case of a constant force F moving across the span of a beam at

constant velocity v will be used.

From Eq. (2.14), the shape function has the form
X, (x) = sin(—")
Hence, the right-hand side of Eqgs. (2.16) and (2.17) is replaced by

F [ p() sin(%)dx
o2

where x is the distance from the end of the span to the force. Assume x is a function of time and is equal

to vt, where t is measured from the instant at which the force entered the span. After substitution of x=vt,
and p(x)=0 (x=vt) (J function at x=vt, which means that p(x)=1 when x=0 and x=1, p(x)=0, otherwise),
Egs. (2.16) and (2.17) become

navt

)

T:(t)+w:T,,<t>=3§sin( ) 2.18)

navt

[

T:(t)+zaw,.r;(t>+w:z.(t)=%sin( ) 2.19)
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After imposing the initial conditions, y(x,0)=0 and y' (%,0)=0, the solution of Eq. (2.18) is

2F 1 . Q, .
——2-_——2—(sm Q,t——Lsinw,t)

T ()=
() A o) -Q, o,

where Q, =nav/l. Since y(x,t) = ZX (x)T, (t) , we obtain the total solution for the deflection

n=1

2F < 1 . Q, . . NIX
x,t)=—Y ———(sinQ ¢t ——=sma,t)sin(—
700 =D > )sin(=-)

n n
If we assume viscous damping in each mode where where 7, /@, = £, is the fraction of critical damping

in the n-th mode, the solution then becomes

y,(x,1) = —ZEZ 5 su;(zmx/l) ~{(@] —Q})sinQ, 1 ~2y,Q, cosQ,t
,01 n=1 (a)n _Qn) +4(7nQn)

Qn

(2.20)

+e7[2y,Q, cosa,t +—(27} + Q) — @, )sinw,]}

n

which will be used as the governing equation of the system model in this research.
Numerical Examples

To evaluate the influence of construction materials on impact factors, three examples of bridges
by reinforced concrete, steel, and timber will be taken based on the information by Barker and Puckett
[15]. To get similar foundational characteristic for the bridges, three other examples with unique natural
frequencies will be shown. The dynamic deflection is calculated by the governing Eq. (2.20). And the

static deflection is based on the following formula,

F(I-v)lI2 N
- 22— (=) —(= W <t<U(Q2
Vi =P = =) = ()'] v<t<12y)
_ )3
_F(l Vl‘)l/z[lz_(l_vt)Z_(_l_)2]+M 0<t<l/(2v)

Ysa = GIEI 2 GEl

where

F: is the vehicle loading
1: is the span length of the bridge beam
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v: is the velocity of the vehicle, and

t: is the time

Definition 8 of the impact factor using the static instead of the median displacement will be used
in the examples because definition 8 is used in the AASHTO code and the bridge examples are designed

based on the AASHTO code. For this case the impact factor is

— é‘dyn - é‘stat
é‘stat
where
J ., = maximum static deflection
0 4, = maximum dynamic deflection

Calculations were performed using symbolic math in Maple and with Excel to process and plot
the results. The dynamic impact factors at mid-span are presented in Figs. 2.3-2.4. Figure 2.3 corresponds
to calculations obtained using examples 1-3 and Figure 2.4 corresponds to calculations obtained for

examples 4-6. The ratio analysis of the impact factor is discussed in a following section.

A constant vehicle loading (F=100KN) with a constant velocity (v=30mile/hr, 13.41m/sec) will
be assumed. An equivalent damping equal to 0.02 of critical damping (damping ratio £=0.02) also will
be presumed for all the examples. The examples will be calculated from information on bridges as
follows:

Example 1

A reinforced concrete T-beam bridge was designed for a 13.42m wide roadway and three-spans
of 10.67m-12.8m-10.67m with a skew of 30 degrees. The first span of 10.67m evaluates the impact

factor. The area of the T-beam (A) is 0.65475 m?. The moment of inertia of the beam cross section (I) is
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0.5315m* . The Young’s modulus (E) is 2.629e+10 Pa. The mass density is 2400 kg/m’. S, =30MPa,

f, =400Mpa. The impact factor, after calculation, is 0.033.

Example 2

A simple span non-composite rolled stee! beam bridge with 10.5m span is designed. Roadway

width is 13.42m curb to curb. Use f, =30MPa, and M270 Gr345 steel. The mass per length of the beam
( p) is 134 kg/m. The moment of inertia and the Young’s modulus are 1.5e-3m* and le+11 Pa,

respectively. The impact factor of this example is 0.025.

Example 3

A glulam beam superstructure to span a 10.668m (3 5ft) center to center of bearing is designed. It

carries two traffic lanes and has a roadway width of 7.3m (24ft). The mass per length of the beam (o) is

193.68 kg/m. The moment of inertia is 0.0108 m*, and the Young’s modulus is 1.03e+10 Pa. The impact

factor is 0.025 percent.

Average Impact Factor vs. Span Length

0.45
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—&— Timber

0.25 +
0.2+
0.15 +
0.1 1
0.05 +

Impact factor

15 20 25 30 35 40 45
Span length (m)
Figure 2.3: Average Impact Factor versus Span Length for Three Materials (Examples 1-3)

Now we set the natural frequencies of three bridges to be equal to 2n? 72 (HZ), and E, I, p

remain unchanged. The next three examples, with equivalent natural frequencies will be a more accurate
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method to evaluate the effect of different materials on impact factors. Because natural frequency is one of
the basic characteristics of a structure, the comparison of bridge impact factors could be made on a similar
basis, if they have the same natural frequency. The basic description of the systems for examples 4-6 are
similar to those of example 1-3. The primary change is on the span lengths, which are 21.71m, 23m, and
19.46m for example 4 (reinforced concrete), 5 (steel), and 6 (wood), respectively. The impact factor is

0.069 for example 4, 0.071 for example 5, and 0.038 for example 6.

Average Impact Factor vs. Frequency

) g T —e— Concrete
1 ° —e —— Steel
~—&— Timber

Impact factor

0 1 2 3 4 5 6 7 8
Frequency (Hz)

Figure 2.4: Average Impact Factor versus Frequency for Three Materials (Examples 4-6)
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3. DISCUSSION AND RECOMENDATION

Discussion

From the numerical examples, the ratio of impact factors for reinforced concrete bridges, steel
bridges, and wooden bridges may be obtained. Table 3.1 shows the ratios from examples 1-3, and Table

3.2 contains the ratios from examples 4-6. For cases 4-6 the bridge length is corrected so that the natural

frequencies are the same.

Table 3.1; Ratio of impact factor of bridges built of three materials normalized to concrete design
(each bridge design has different natural frequencies)

Concrete bridge as one
Concrete bridge 1
Steel bridge 0.750751
Timber bridge 0.738739

Table 3.2: Ratio of impact factor of bridges built of three materials normalized to concrete design
(bridge design altered to equivalent natural frequencies in all cases)

Concrete bridge as one
Concrete bridge 1
Steel bridge 1.030479
Timber bridge 0.557329

Since equal natural frequencies provide a similar basis for comparison of the impact factor, the
primary focus is on results shown in Table 3.2. From Table 3.2, we see that the impact factors for the
reinforced concrete bridge and the steel bridge are close. The impact factor of the wooden bridge is about

45 percent less than the impact factor for concrete and steel bridges.

If we analyze the same six example bridges using several bridge design codes from different
countries, the following results are obtained. Table 3.3 shows the impact factors, which are calculated for
examples 1-6 according to international bridge design codes. The ratios of impact factors as shown for the
calculated results for examples 1-3 and examples 4-6 are shown in Table 3.4 and Table 3.5, respectively.

Note that it has been assumed that the structures designed are not in fatigue and fracture limit state. Also

21



because of the limited specifications for timber, the impact factor for wooden bridges are not shown for

the Taiwanese code and the Eurocode.

Table 3.3: Impact factor according to international bridge design codes

Example 1 | Example 2 | Example 3 | example 4 | Example 5 Example 6
AASHTO 0.33 0.33 0.165 0.33 0.33 0.165
OHBDC 0.3 0.3 0.21 0.3 0.3 0.21
Taiwan 0.3 0.3 — 0.2548 0.2494 e
Eurocode 1.43 1.44 o 1.21 1.2 —
Table 3.4: Ratio of impact factor (from examples 1-3)
Concrete Steel wood
AASHTO 1 1 0.5
OHBDC 1 1 0.7
Taiwan 1 1 -
Eurocode 1 1 -
Table 3.5: Ratio of impact factor (from examples 4-6)
Concrete Steel Wood
AASHTO 1 1 0.5
OHBDC 1 1 0.7
Taiwan 1 0.98 -—--
Eurocode 1 0.99 -

It is clear that any difference in the impact factor between concrete and steel bridges is small, no
matter which code is applied. Consequently, it is useful to compare the ratio of the impact factor for
examples 4-6 obtained from calculations based on the governing equation (2.20) with those from

international codes (Table 3.6).
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Table 3.6: Comparison of ratio of impact factor (from examples 4-6)

Concrete Steel Wood
Eq. (2.20) 1 1.03 0.56
AASHTO 1 1 0.5
OHBDC 1 1 0.7
Taiwan 1 0.98 —
Eurocode 1 0.99 ——

From Table 3.6, it is evident that there is a significant degree of divergence for the ratios of
timber bridges. It appears from this work that the AASHTO code underestimates the impact factor of

timber bridges, while the OHBDC uses a conservative estimate.

Although, based on concepts of Load Resistance Factor Design (LRFD), it is logical to extend the
load factor to create an impact factor, the same percentage for impact factor results. Hence, one
conclusion can be made from the simple system model used in this research; the impact factors for
reinforced concrete and steel bridges are close, and given other types of uncertainty may be taken as
identical. The impact factor for timber bridges appears to be about 45 percent below that of concrete or
steel bridges. This impact factor is higher than the design factor used in the AASHTO code. However,

more effort is required to verify the quality of this observation.

Recommendation

The following are recommendations for further study of influence of materials on bridge impact

factors.

A simple model is used in this paper. However, many random variables exist in the interaction of
moving vehicles and bridge systems. A more accurate system model is essential for a complete

understanding of impact factors.

23



A large difference in research is evident between composite and non-composite materials.
Construction methods also influence the material properties. Therefore, it is necessary to investigate the

sensitivity of models to different properties which result from construction of bridges with different
designs.

Constant, single-point, loading is used in this paper, however multi-point loading should be used
to model multi-axle vehicle loading in future studies.

Multi-span bridge systems should be considered in future research.

The interaction of the suspension system of vehicle loading to the roadway roughness 1s a
complex and important parameter in models of bridge dynamics. This extension is to include the

suspension system of the vehicle loading has been shown to be important in predicting dynamic loading.

The dynamic impact factor is defined based on the ratio of dynamic deflection to static deflection.
The stress rather than the deflection of the bridge is of primary importance. The relationship between the

impact factor and resultant dynamic stress should be considered in future research.
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